Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 18(3): e0282632, 2023.
Article in English | MEDLINE | ID: covidwho-2251344

ABSTRACT

The COVID-19 pandemic and the disease triggered by the African Swine Fever virus are currently two of the main problems regarding public and animal health, respectively. Although vaccination seems to be the ideal tool for controlling these diseases, it has several limitations. Therefore, early detection of the pathogen is critical in order to apply preventive and control measures. Real-time PCR is the main technique used for the detection of both viruses, which requires previous processing of the infectious material. If the potentially infected sample is inactivated at the time of sampling, the diagnosis will be accelerated, impacting positively on the diagnosis and control of the disease. Here, we evaluated the inactivation and preservation properties of a new surfactant liquid for non-invasive and environmental sampling of both viruses. Our results demonstrated that the surfactant liquid effectively inactivates SARS-CoV-2 and African Swine Fever virus in only five minutes, and allows for the preservation of the genetic material for long periods even at high temperatures such as 37°C. Hence, this methodology is a safe and useful tool for recovering SARS-CoV-2 and African Swine Fever virus RNA/DNA from different surfaces and skins, which has significant applied relevance in the surveillance of both diseases.


Subject(s)
African Swine Fever Virus , African Swine Fever , COVID-19 , Pulmonary Surfactants , Animals , Swine , Humans , African Swine Fever/diagnosis , African Swine Fever/epidemiology , African Swine Fever/prevention & control , COVID-19/diagnosis , COVID-19/epidemiology , African Swine Fever Virus/genetics , Pandemics/prevention & control , SARS-CoV-2/genetics , Surface-Active Agents , COVID-19 Testing
2.
Anal Chem ; 94(23): 8277-8284, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1873390

ABSTRACT

CRISPR/Cas12, a highly efficient and specific nucleic acid recognition system, has been broadly employed to detect amplified DNA products. However, most reported methods adopt a two-step detection mode that needs a liquid transfer step, thus complicating the detection procedure and posing a risk of aerosol contamination. A one-pot detection method can obviate these problems, but it suffers from poor detection efficiency due to the loss of amplification templates elicited by CRISPR/Cas12 cleavage. In this study, we discovered that a glycerol additive dramatically promoted the detection efficiency of the one-pot recombinase polymerase amplification (RPA)-CRISPR/Cas12a method. Compared with the glycerol-free version, its sensitivity was nearly 100-fold higher and was close to that of the canonical two-step method. Further investigation displayed that the enhanced detection efficiency was attributed to the phase separation of the RPA and CRISPR/Cas12a system during the initial phase of the RPA reaction caused by the glycerol viscosity. This highly efficient one-pot method has been triumphantly harnessed for the detection of African swine fever virus (ASFV) and SARS-CoV-2, achieving naked-eye readout through a smartphone-equipped device. The currently developed glycerol-enhanced one-pot RPA-CRISPR/Cas12a method can be an advantageous point-of-care nucleic acid detection platform on account of its simplicity, high sensitivity, and universality.


Subject(s)
African Swine Fever Virus , COVID-19 , African Swine Fever Virus/genetics , Animals , CRISPR-Cas Systems/genetics , DNA/genetics , Glycerol , Nucleic Acid Amplification Techniques/methods , Recombinases , SARS-CoV-2 , Sensitivity and Specificity , Swine
3.
Anal Chem ; 94(14): 5591-5598, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1764108

ABSTRACT

High-cost viral nucleic acid detection devices (e.g., qPCR system) are limited resources for developing counties and rural areas, leading to underdiagnosis or even pandemics of viral infectious diseases. Herein, a novel virus detection strategy is reported. Such detection method is enabled by TR512-peptide-based biorthogonal capture and enrichment of commercially available Texas red fluorophore labeled nucleic acid on the functionalized paper. The GST-TR512 fusion protein electrostatically immobilized on the paper is constructed to retain the binding affinity of TR512-peptide toward Texas red fluorophore labeled nucleic acid released in the preamplification process, then the enrichment of analytes enhances fluorescence signal for rapid detection as volume of sample filters through the paper. The method is generally applicable to different nucleic acid preamplification strategies (PCR, RAA, CRISPR) and different virus types (Hepatitis B virus (HBV), African swine fever virus (ASFV), human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 or 2019 nCoV)). Finally, a full-set virus detection device is developed in house to detect the presence of Hepatitis B virus (HBV) viral gene in patients' blood samples. Taken together, we first apply TR512-peptide in the signal enrichment and the novel detection strategy may offer an inexpensive, rapid, and portable solution for areas with limited access to a standard diagnosis laboratory.


Subject(s)
African Swine Fever Virus , African Swine Fever , COVID-19 , Nucleic Acids , African Swine Fever/diagnosis , African Swine Fever Virus/genetics , Animals , COVID-19/diagnosis , Fluorescent Dyes , Humans , Nucleic Acid Amplification Techniques/methods , Peptides/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Swine
4.
ACS Synth Biol ; 11(1): 383-396, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1599309

ABSTRACT

Rapid diagnosis based on naked-eye colorimetric detection remains challenging, but it could build new capacities for molecular point-of-care testing (POCT). In this study, we evaluated the performance of 16 types of single-stranded DNA-fluorophore-quencher (ssDNA-FQ) reporters for use with clusters of regularly spaced short palindrome repeats (CRISPR)/Cas12a-based visual colorimetric assays. Among them, nine ssDNA-FQ reporters were found to be suitable for direct visual colorimetric detection, with especially very strong performance using ROX-labeled reporters. We optimized the reaction concentrations of these ssDNA-FQ reporters for a naked-eye read-out of assay results (no transducing component required for visualization). In particular, we developed a convolutional neural network algorithm to standardize and automate the analytical colorimetric assessment of images and integrated this into the MagicEye mobile phone software. A field-deployable assay platform named RApid VIsual CRISPR (RAVI-CRISPR) based on a ROX-labeled reporter with isothermal amplification and CRISPR/Cas12a targeting was established. We deployed RAVI-CRISPR in a single tube toward an instrument-less colorimetric POCT format that required only a portable rechargeable hand warmer for incubation. The RAVI-CRISPR was successfully used for the high-sensitivity detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and African swine fever virus (ASFV). Our study demonstrates this RAVI-CRISPR/MagicEye system to be suitable for distinguishing different pathogenic nucleic acid targets with high specificity and sensitivity as the simplest-to-date platform for rapid pen- or bed-side testing.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever , COVID-19 Nucleic Acid Testing , COVID-19 , CRISPR-Cas Systems , SARS-CoV-2/genetics , African Swine Fever/diagnosis , African Swine Fever/genetics , Animals , COVID-19/diagnosis , COVID-19/genetics , Colorimetry , Humans , Swine
5.
Transbound Emerg Dis ; 68(6): 3194-3199, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1532923

ABSTRACT

African swine fever (ASF) is a contagious haemorrhagic disease in pigs and has become endemic in several Vietnam provinces since the first outbreak in 2019. The presence of carriers and the recurrence of disease in the surviving swine herd after an ASF outbreak has not previously been properly evaluated. In this study, pigs naturally infected with an acute form of ASF were allowed to recover from the disease. A serological follow-up was conducted for more than 14 months with 14 convalescent gilts and their offspring. All convalescent animals had long lasting high serum antibody levels without persistent viremia. They also did not excrete virus via nasal discharge post-recovery. These convalescent pigs could partially perform as replacement gilts despite the fact that ASF affected reproductive performance. Here, we confirmed that there were neither the carriers of nor recurrence of disease in the convalescent pigs and their offspring following the outbreak of acute ASF. These findings may facilitate efforts to design a new farming model in ASF endemic provinces in Vietnam where there is a lack of a repopulation strategy due to the limited funding received from the local regulatory authorities.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , African Swine Fever Virus/genetics , Animals , Disease Outbreaks/veterinary , Female , Follow-Up Studies , Sus scrofa , Swine , Vietnam/epidemiology
6.
Transbound Emerg Dis ; 68(5): 2657-2668, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1411005

ABSTRACT

African swine fever (ASF) is currently threatening the swine industry at a global level. The disease originated in Africa has spread to Europe, Asia and Oceania, since 2007, reaching a pandemic dimension. Currently, the spread of ASF is unstoppable and that the development of a safe and effective vaccine is urgently required. The objective of this paper is to review the vaccine candidates tested during the 20th and 21st centuries, to identify the strengths and weaknesses of these studies and to highlight what we should learn. Several strategies have been explored to date, some of which have shown positive and negative results. Inactivated preparations and subunit vaccines are not a viable option. The most promising strategy would appear to be live attenuated vaccines, because these vaccine candidates are able to induce variable percentages of protection against certain homologous and heterologous virus isolates. The number of studies on live attenuated vaccine candidates has steadily increased in the 21st century thanks to advances in molecular biology and an in-depth knowledge of ASF virus, which have allowed the development of vaccines based on deletion mutants. The deletion of virulence-related genes has proved to be a useful tool for attenuation, although attenuation does not always mean protection and even less, cross protection. Therefore, ASF vaccine development has proved to be one of the top priorities in ASF research. Efforts are still being made to fill the gaps in the knowledge regarding immune response, safety and cross protection, and these efforts will hopefully help to find a safe and effective vaccine that could be commercialised soon, thus making it possible to turn a dream into reality.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Viral Vaccines , African Swine Fever/epidemiology , African Swine Fever/prevention & control , African Swine Fever Virus/genetics , Animals , Swine , Vaccines, Attenuated , Viral Proteins
7.
PLoS One ; 16(7): e0254815, 2021.
Article in English | MEDLINE | ID: covidwho-1318322

ABSTRACT

African swine fever (ASF) is a serious contagious disease that causes fatal haemorrhagic fever in domestic and wild pigs, with high morbidity. It has caused devastating damage to the swine industry worldwide, necessitating the focus of attention on detection of the ASF pathogen, the African swine fever virus (ASFV). In order to overcome the disadvantages of conventional diagnostic methods (e.g. time-consuming, demanding and unintuitive), quick detection tools with higher sensitivity need to be explored. In this study, based on the conserved p72 gene sequence of ASFV, we combined the Cas12a-based assay with recombinase polymerase amplification (RPA) and a fluorophore-quencher (FQ)-labeled reporter assay for rapid and visible detection. Five crRNAs designed for Cas12a-based assay showed specificity with remarkable fluorescence intensity under visual inspection. Within 20 minutes, with an initial concentration of two copies of DNA, the assay can produce significant differences between experimental and negative groups, indicating the high sensitivity and rapidity of the method. Overall, the developed RPA-Cas12a-fluorescence assay provides a fast and visible tool for point-of-care ASFV detection with high sensitivity and specificity, which can be rapidly performed on-site under isothermal conditions, promising better control and prevention of ASF.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/genetics , Swine Diseases/diagnosis , African Swine Fever/genetics , African Swine Fever/virology , African Swine Fever Virus/genetics , Animals , Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , DNA-Directed DNA Polymerase/chemistry , Endodeoxyribonucleases/chemistry , Molecular Diagnostic Techniques , Point-of-Care Systems , Recombinases/chemistry , Swine , Swine Diseases/genetics , Swine Diseases/pathology , Swine Diseases/virology
8.
Nano Lett ; 21(11): 4643-4653, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1303734

ABSTRACT

DNA quantification is important for biomedical research, but the routinely used techniques rely on nucleic acid amplification which have inherent issues like cross-contamination risk and quantification bias. Here, we report a CRISPR-Cas12a-based molecular diagnostic technique for amplification-free and absolute quantification of DNA at the single-molecule level. To achieve this, we first screened out the optimal reaction parameters for high-efficient Cas12a assay, yielding over 50-fold improvement in sensitivity compared with the reported Cas12a assays. We further leveraged the microdroplet-enabled confinement effect to perform an ultralocalized droplet Cas12a assay, obtaining excellent specificity and single-molecule sensitivity. Moreover, we demonstrated its versatility and quantification capability by direct counting of diverse virus's DNAs (African swine fever virus, Epstein-Barr virus, and Hepatitis B virus) from clinical serum samples with a wide range of viral titers. Given the flexible programmability of crRNA, we envision this amplification-free technique as a versatile and quantitative platform for molecular diagnosis.


Subject(s)
African Swine Fever Virus , Epstein-Barr Virus Infections , African Swine Fever Virus/genetics , Animals , CRISPR-Cas Systems , DNA/genetics , Herpesvirus 4, Human , Swine
9.
Transbound Emerg Dis ; 67(6): 2446-2454, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-71842

ABSTRACT

Real-time PCR assays are highly sensitive, specific and rapid techniques for the identification of ASF virus (ASFV) (Section 3.8, OIE Terrestrial Manual, 2019). Although an ASFV p72 gene-based real-time PCR assay (a.k.a. the Zsak assay) (Journal of Clinical Microbiology, 2005, 43, 112) has been widely used for ASFV detection, several more ASFV whole genome sequences have become available in the 15 years since the design of the Zsak assay. In this study, we developed a new ASFV p72 gene-based real-time PCR after analysis of all currently available sequences of the p72 gene and multiplexed the new assay with a modified Zsak assay aiming to have a broader coverage of ASFV strain/isolates. To reduce false-negative detections, porcine house-keeping gene, beta actin (ACTB), was applied as an internal control. Eight ACTB sequences from the GenBank and 61 partial ACTB sequences generated in this study, and 1,012 p72 sequences from the GenBank and 23 p72 sequences generated at FADDL, were used for ACTB and ASFV primer and probe designs, respectively, to ensure broader host and ASFV coverage. Multiplexing ACTB in the reaction did not affect ASFV amplification. The multiplex assay was evaluated for strain/isolate coverage, sensitivity and specificity. The in silico analysis showed high ASFV strain/isolate coverage: 98.4% (978/994) of all p72 sequences currently available. The limit of detection (LOD) was 6 plasmid copies or 0.1-1 TCID50 /ml of ASFV isolates per reaction. Only targeted ASFV isolates and the viruses in the positive clinical samples were detected, indicating that the assay is highly specific (100% specificity). The test results of 26 ASFV isolates with different country origins showed that this newly developed multiplex assay performed better than the Zsak assay that has been widely accepted and used worldwide, indicating that it may be used as an alternative assay for ASFV detection.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , African Swine Fever/virology , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Actins/genetics , African Swine Fever Virus/genetics , Animals , DNA Primers , DNA Probes , DNA, Viral/genetics , Sensitivity and Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL